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NEW INTERPRETATIONS 

Characterization of Molecular Weight 
Distributions by the Standard Deviation 

SUMMARY 

The standard deviation u is known to  be an absolute measure of 
Gaussian (G) distributions, because i t  (or multiples of it) always 
determines a constant fraction of the material. However, this is not 
true for distribution functions other than Gaussian. The weight fractions 
corresponding to weight standard deviations ( fuW) of Schulz-Flory 
distributions depend on the polymolecularity index xw/xn, approaching 
a limiting value of W(xw f uw) = 86.5 for xw/xn -+ O0. The use of 
weight standard deviations is meaningless for generalized logarithmic 
normal (LN) distributions if xw/xn >52. The weight fractions 
W(Xn f on)  around the number-average degree of polymerization of G 
and LN distributions first go through a maximum before decreasing with 
increasing xw/xn. The weight fractions W(xn f on) decrease steadily with 
higher xw/xn. 

Many parameters have been suggested to  characterize the spread of 
molecular weights or the corresponding degrees of polymerization in a 
polymer sample. Most commonly used is the ratio of weight-average Mw 
to nurnber-average molecular weight Mn or of the corresponding degrees 
of polymerization xw and Xn, and the polyrnolecularity or polydispersity 
index Qw,n 

Similar quantities have been defined on the basis of other averages, e.g., 
z-average and viscosity-average (Qz,w = xz/xw, Qv,n = xv/xn, etc.). Other 
measures which have been proposed can be considered as simple derivatives 
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460 NEW INTERPR ETA l7ONS 

from the polymolecularity index, e.g., the molecular inhomogeneity [ I ]  

the A factor [2] 

or the relative dispersion factor [3] 

In addition, the standard deviation was suggested as a measure for the 
broadness of a molecular weight distribution (MWD) as early as 1942 [4] 
and later by others [5-71. The standard deviation u can be calculated 
directly from two averages of successive order without any assumption about 
the distribution law, e.g., 

if Xn and xw are used, and correspondingly, if xw and xz are known: 

The standard deviations On and uw can be seen to be simply related to 
the parameters defined by expressions ( I )  to (4): 

The standard deviation uw can be considered as an absolute measure for 
the broadness of the MWD of Gaussian weight distributions of molecular 
weights. This is readily visualized from the meaning of the standard devia- 
tion as the distance from the degree of polymerization at the maximum 
(xw) to either inflection point of the Gaussian distribution curve. Further- 
more, the area under the curve from x = xw - uw to x = xw t uw is always 
68.3% of the total, irrespective of the numerical values of xw and uw [8]. 
The areas for the ranges xw k 2 uw and xw f 3 uw are 95.4 and 99.7%, 
respectively. Because the standard deviation (or multiples of it) always 
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NEW INTERPRETA TIONS 461 

determines a constant fraction of the material, it is an absolute measure for 
the broadness of Gaussian distributions. 

The problem is whether or not the standard deviation is an absolute 
measure (as defined by constant fractions) for the broadness of the MWD 
of distributions other than Gaussian. If not, it remains to be clarified how 
good a measure the standard deviation is for different types of distributions. 

We therefore calculated the weight fractions corresponding to unit values 
of on or ow for polymer samples having either a Gaussian (G), generalized 
logarithmic normal (LN), or Schulz-Flory (SF) weight distribution of 
molecular weight (for the definition of these distributions see, e.g., Ref. 9). 

average degree of polymerization Xn = 10,000 are listed in Table 1 for 
polymolecularity indices from 1.01 to 50. The weight-average degrees of 
polymerization xw are given for comparison in the last column of Table I .  

As immediately seen from Eq. (5a), on, for a given Xw/Xn, is independ- 
ent of the type of distribution. In contrast, ow depends on the type of the 
distribution (G, LN, SF). 

It should be born in mind that the calculation of the weight fraction of 
a polymer is meaningless for all standard deviations exceeding their corre- 
sponding averages, i.e., on > Xn and ow > xw, since the lower limit of the 
degree of polymerization then becomes negative. These values of on and 
ow are given in parantheses in Table 1 .  For all types of distributions, On is 
always greater than Xn if x&n > 2. In the case of weight standard devia- 
tions, uw > xw for xw/xn > 2 is also found for LN weight distributions. 
For SF weight distributions, ow does not become equal to xw even if 

The standard deviations on and ow of a polymer sample with the number- 

xw/xn = 50. 
The weight fractions in per cent of the total material corresponding to  

unit values of on and ow are given in Tables 2, 3, and 4 for polymers with 
G, LN, and SF distributions, respectively. Because we are examining an 
asymmetric area in the weight fractions W(Xn - on), for example, from 
x = Xn - an to x = Xn, are not identical with the weight fractions W(xn t on) 
from x = Xn to x = Xn t on. They are thus listed separately in addition to 
their sum W(x * on). Correspondingly, W(xw - ow) t W(xw t aw) = 
W(xw f ow). For illustration, the total weight fractions W(xw ? ow) are 
plotted against xw/xn in Fig. 1 and the total weight fractions W(Xn * on) 
vs. xw/xn in Fig. 2. 

xw/xn = 1.5, because one tail of this curve lies in the range of negative x 
values. For xw/xn = 2.0 some 3% of the total area is in this negative region. 
The values quoted show the unexpected result that on > uw. 

The calculations for the Gaussian curve are not carried beyond the limit 
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462 NEW INTERPR E TA TIONS 

Table 1. Standard Deviations On and uw of a Polymolecular 
Material with Xn = lo4 for Different xw/xn Valuesa 

103 ow 

xw/xn 1 0 % ~  G LN SF 1 o4 xW 

1.01 

1.05 
1.1 
1.5 
2 .o 
3 .O 
4.0 
5 .O 
10.0 
50.0 

~ 

1 .oo 
2.24 
3.1 6 
7.07 
10.00 
(14.1) 
(1 7.3) 
(20.0) 
(30.0) 
(70.0) 

~ 

1.00 1.01 

2.17 2.35 
2.90 3.48 
5.99 10.6 

20.0 
(42.3) 
(69.2) 

(1 00) 

(300) 
(350) 

1.005 

2.28 
3.32 
8.63 
14.1 
24.4 
34.6 
44.8 
94.8 
49 5 

1.01 

1.05 
1.1 
1.5 
2.0 
3.0 
4.0 
5 .O 
10.0 
50.0 

a C  = Gaussian, LN = logarithmic normal, SF = Schulz- 
Flory distributions. Numbers in brackets indicate Or > XI 

(with r = n or r = w). 

For weight distributions, the Gaussian curves are symmetrical around xw. 
W(xw f uw) is thus independent of xw/Xn (Fig. 1). The corresponding 
weight fractions for SF distributions increase, however, with increasing 
Xw/Xn, approaching a limiting value of W(xw k uw) = 86.5% for xw/xn -+ O0. 

The W(xw f aw) of LN distributions increases much faster, reaching nearly 
90% for xw/xn = 2 (limit for meaningful ow-values for LN distributions). 

For weight fractions W(Xn f on) around the number-average degree of 
polymerization, the situation is different. Interestingly, the weight fractions 
for G and LN distributions first go through a maximum before decreasing 
with increasing xw/xn. This result was not changed by carrying the integra- 
tion in 10,000 steps instead of 5,000 steps. The weight fractions of SF 
distributions decrease steadily with higher xw/xn. All distributions reach 
their nonsense limit of an  at xw/xn = 2. 

From these results it may be concluded that for narrow distributions, 
i.e., Q - 1.0, On can be used as a good measure to  characterize the width 
of the weight LN and SF distributions. On the other hand, uw is an 
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- 
1 2 3 1 5 x,/xn 

Fig. 1. Total weight fractions Wx(xw ? uw) corresponding to  unit weight 
standard deviations as a function of the polymolecularity index xw/xn for 
logarithmic normal (LN), Schulz-Flory (SF), and Gauss (C) weight distribu- 

tions of degrees of polymerization x. 

Fig. 2. Total weight fractions Wx(Xn f On) corresponding to unit number 
standard deviations as a function of the polymolecularity index xw/xn for 
logarithmic normal (LN), Schulz-Flory (SF), and Gauss (G) weight dis- 

tributions of degrees of polymerization x. 
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unsatisfactory measure for the broadness of weight distributions. In no 
case is the standard deviation an absolute measure of the broadness of an 
MWD (with the exception of uw for Gaussian weight distributions, of 
course). 

The discussion was restricted to weight distributions because weight 
distributions will be observed in analytical work. In kinetic and mechanistic 
work, however, one is interested in number distributions. It is easy to 
show mathematically that none of the conclusions drawn above about the 
meaning of the standard deviations must be changed for LN and SF dis- 
tributions if one switches from weight to number distributions. The values 
in Tables 2 and 3 as well as in Figs. 1 and 2 may thus be used for weight 
and number SF and LN MWD. In the case of Gaussian number distributions, 
On is, of course, an absolute measure of the broadness of MWD. 

measure for broadness (‘‘absolute” defined in the sense as the number 
standard deviation is for Gaussian number distributions or the weight 
standard deviation for Gaussian weight distributions), then this measure 
must be peculiar to the particular distribution. To our knowledge, no such 
absolute measures are known for logarithmic normal, Schulz-Flory, Poisson, 
Maxwell, or other distributions. 

It is easy to see that if each type of distribution possesses an absolute 
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